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ABSTRACT 

A theoret ical   s tudy i s  performed  of the  f low  in  a th in  shock layer  about 

axisymmetric  blunt  bodies  by a Blasius  type series expansion  technique. Solu- 

t ions  were- obtained for three terms i n   t h e  series, and the   va l id i ty  of the 

resul t ing  solut ions i s  shown to  numerically converge away from the  stagnation 

po in t   t o  a body angle  near the sonic   l ine (- 45'). The primary  objective of 

the invest igat ion w a s  to determine the  coupling  experienced between t h e  

-radiative and viscous  transport.  Consequently,  solutions were obtained  for 

both the viscous  and  inviscidmodels a t  three extreme ea r th   r een t ry   f l i gh t  

conditions. A real gas model which i s  both  emitting  and  absorbing radiant 

energy i n  a three-band  cont inumsadiat ion model was considered. The dif-  

ferential  approximation method is  used to   descr ibe  the  radiat ive  t ransport .  

A cold, non-blowing w a l l  i s  assumed and -the Prandtl  number as w e l l  as the 

viscosity-density  ratio are assumed constant. 

The resu l t s   ind ica te  a weak coupling between v iscos i ty  and the rad ia t ive   f lux  

d is t r ibu t ion .  The influence of radiat ive  t ransport  upon the  convective  heat- 

ing i s  shown t o  be s ignif icant ;  however, the  effect   of   radiat ive  t ransport  

upon the ve loc i ty   f i e ld  i s  small. 
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Ai,l,Ai,l... coeff ic ients  i n  the series expansion  for   integrated  intensi ty  
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Qi, l 'Qi ,2  

blackbody  radiation 

body bluntness  (b/a) (see Fig. 1) 

Planck function 

speed of l i g h t  
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coef f ic ien ts   in   the  series expansion for   t angent ia l   ve loc i ty  

coef f ic ien ts   in  f irst  order  enthalpy  and  velocity  solutions 

coef f ic ien ts   in  the series expansion f o r  to ta l   en tha lpy  

to ta l   en tha lpy  

specific  enthalpy,  Planck  constant 

spec t ra l   rad ia t ion   in tens i ty  

in tegra ted   in tens i ty  
1 + Ky 
body curvature, Boltzman constant 
Mach number 

mass 

mass dens i ty   v i scos i ty   ra t io  psps/pp 

number density  of  nitrogen atoms 

pre s sure 

Prandtl  number 

c o e f f i c i e n t s   i n  the series expansion for radiat ive  heat   f lux 
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( s ) ~ , ( % ) ~  spectral   radiat ive  heat   f lux i n  the   d i rec t ion  of  x and y,. respectively 

normalized to t a l   hea t   f l ux  

distance measured  from ax i s  of  symmetry 

body radius of curvature at stagnation  point 

shock radius of curvature a t  stagnation  point 

Reynolds number p,U,Es/p ( 

temperature 

veloci ty  component p a r a l l e l   t o   t h e  body 

veloci ty  component perpendicular  to the body 

coeff ic ients  i n  the  series  expansion of  normal veloci ty  

d is tance   para l le l   to   the  body  measured  from stagnat ion  l ine 

distance  normal t o  the body 

absorption  coefficient 

degree  of  dissociation 

spec i f ic   hea t   ra t io  

shock layer  thickness 

stagnation  point  density  ratio  across shock . 

normalized stream function 

dissociation  energy 

ionization  energy 

frequency 

quantum mechanical  correction  factor  for  absorption  coefficient 

density 

normalized  skin  friction 

stream function 

parametric  variable  defined  by Eq. (74) 

cp/cv 
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Subscripts 

S 

b 

quant i t ies  a t  shock 

quant i t ies  a t  body 

quant i t ies  a t  stagnation line 

i t e ra t ive   so lu t ion  

nitrogen 

electron 

free stream conditions 
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Sectiron 1 

INTRODUCTION 

The a b i l i t y  to predict  the  convective  and  radiative  heating  experienced  by a 

reentry body a t  and away from i t s  stagnation  point i s  necessary  for  mission 

planning  and  vehicle  design. To date  the  stagnation  point  analysis  has  been 

of primary in t e re s t .  A t  the  stagEation  point, a l l  physical mechanisms of 

energy  transport are represented,  and it i s  an t ic ipa ted   tha t  the stagnation 

point  represents the location of maximum heating.  Consequently, the momentum 

and  energy f i e l d s  of EfiFstagnation  point have been  described i n  somewhat com- 

p l e t e   d e t a i l  (Ref. 1). 

In  order to obtain  the complete heat load  dis t r ibut ion,  however, the convective 

and  radiative  heating  loads away from the  s tagnat ion  point   are   essent ia l .  The 

complexity  of  including  the  detail of the  t ransport  mechanisms in to   the  

complete momentum and  energy  equations  around a body r e su l t s   i n   so lu t ions  

which becomes prohibitively  time consuming even w i t h  present-day  numerical 

techniques.  This  investigation was to develop a simplified  analysis to study 

the  coupling between the momentum and  energy  transport mechanisms i n  a thin- 

radiat ing shock layer  (viscous and inviscid)  away from the  stagnation  point. 

A Blasius  type  series  representation of the inviscid,  adiabatic,  hypersonic shock 

layer  about a blunt body has been shown to be  adequate to the sonic   l ine (Ref .  2). 

I n  t h i s  study, the sane technique i s  employed to study  the  radiating shock layer  



for  both  inviscid  and  viscous  cases. A s  a r e s u l t  of t h i s  study, it is expected 

that the   d i s t r ibu t ion  of radiative  heating  around  the body can  be  determined 

both  qual i ta t ively and quant i ta t ively,  that the e f f ec t  of radiation  energy loss 

on the   ve loc i ty   f ie ld  and the  degree af coupling be_tween the gas dynamics  and 

the  energy  distribult ion  (radiative and  convective  fluxes)  can be determined, 

and that the   e f f ec t  of boundary layer on r ad ia t ive   hea t ing   t o  the body ( i f  any) 

can a l s o  be determined. The underlying  concept  of the formulation for veloci ty  

f i e l d  can be found in   Par t  I o f  . .Ref .  3. The r a d i a t i v e ~  transfer equation i s  re- 

p laced   by the  w e l l  known d i f f e r e n t i a l  approximation,  e.&  Vincenti  and Kruger 

( R e f .  4), and s implif icat ion i s  made assuming a th in   l aye r  which i s  consistent 

w i t h  those made i n  t h e   f l u i d  mechanics. A three-band model is  used f o r   t h e  

continuum  absorp-tion- coefficient.   In  each band analytic  expressions are 

available  (Hoshizaki and  Wilson,  Ref. 5) that   give  explicit ly  the  frequency 

dependence of  the  absorption  coefficients.  Thus proper  integration  can  be 

performed i n  each  of the Trequency ranges  and mean quantit ies  such as rad ia t ive  

heat flux can  be found i n  terms of   the  local  thermodynamics. No l i n e  o r  mole- 

cular  band rad ia t ion  i s  included  in  this study. The body wall i s  assumed to   be  

highly  cooled  in comparison with the  gas  behind  the..shock.  Perfect  gas thermo- 

dynamics are not assumed. The equation of state i s  obtained  by  curve-Titting 

the  data  based on numerical  evaluation for a i r  of Reel  and L e w i s  (Ref. 6). 

The details of the  formulat ion  in  this study  are  outl ined in Part  I1 af 

R e f r - 3 .  I n  t h i s  earlier work, however, only two terms of the se r i e s  had 

been  formulated  and  they are represented  by a  group^ of universal  functions 

which were independent of parti-cular body shape. I n  this study, no universal  

2 



function w i l l  be  evaluated  since we w i l l  on ly   be   in te res ted   in  a specific  type 

of body. Three terms of the   se r ies  have been  formulated  and  solved. Many 

errors  contained  in  the Part I1 of Ref .  3 have been co r rec t ed   i n  this  stucty. 

An inviscid  solut ion  as   wel l   as   viscous  solut ion w i l l  be  presented. 

3 



Section 2 

ANALYSIS 

2.1 GOVERNING EQUATIONS 

The fluid  conservation  equatians (mass, momentum, energy) for axisymmetric 

b o d i e e w r i t t e n  i n  a body oriented  coordinate  system  (Fig. 1) , are: 

0 0 

The  y-momentum equation bas been  simplified by retaining  only the terms of 

order  unity. 

The radiat ion field I s  coupled w i t h  t h e   f l u i d  mechanics  through  the  integral 

term  in  the  energy Eq. (4)  which represents t he  radiative  energy loss or gain 

per   uni t  volume. 

I n  seeking  solutions of the radiatiTe t ransfer   eqmtion,  we will use  the 

differential   approximation.  In  the  present  case o f  a thin  hot  gas  with a cold 

4 
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Fig. 1 Sketch of Geometry 

b 
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wall and cool  gas i n  f ront  of the shock, the  differential   approximation has been 

suggested as a va l id   descr ip t ion  o f  the   radiat ive  t ransport  (i.e. R e f .  4).  

I n  the framework of-the different ia l   approximation,   the   radiat ive  t ransfer  equa- 

t i o n  i s  approximated  by  the  following set of equations. 

with 

In  the  case of the  th in  shock layer,  a/ax << a/ay,  and we make the  approxi- 

mation that* 

V ' y )  z a ( Q V  

a Y  

Thus, Eq. (5a) becomes 

a (  ) "X = - cy [ ( I ~ ) ~  - 4 m V l  
a Y  V 

One immediate consequence,of this thin  layer   s implif icat ion is that Eqs. (5b) 

and (6) are sufficient  for  the  determination of  gy and Io; Eq. (7) i s  

only  needed for   ca lcu la t ing  s. 

* 
The error  introduced by t h i s  approximation i s  shown t o  be of the  order. cL 
(Appendix 11). 
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We w i l l  now consider  only  the  absorption  coefficient aV for continuum 

radiat ion and  neglect  the  line  and  molecular  band  radiation. W e  

w i l l  a l so  take the  three band  model f o r  aV; namely, we approximate o! by 

three  analyt ic   expressions  in  three different  frequency  ranges of the spectrum. 

V 

The specif ic  form of o! and  the  range of- frequency  interval will be presented 

in  the  next  section. Here we w i l l  represent  the  frequency  interval  generally 

V 

by (Ahv)i, i = 1,2,3. We then  define 

Clearly 
03 

o!10 
= aV&dt) = C ( C Y I ~ ) ~  5 

0 
i 

03 

r 
B = aVBVdV = C Bi 

i 
0 

With substi tution  of Eqs. (9), Eq. (4) and  the  radiat ive  t ransfer  Eqs. ( p )  

and (6) (a f te r   in tegra t ion  w i t h  respect t o  frequency)  then become 

7 



We now proceed to. norma , l i ze  the variables.  The distances x, y and  the 

distance from the  axis ,  r, are normalized by the  stagnation  point shock 

radius Rs, the ve loc i t ies  u, v by the free stream veloci ty  u,, the 

densi ty  p by the  free stream densi ty  p,, the  pressure p by twice the  

free stream kinetic  pressure p,u,, the body (or shock)  curvature k by 

l / R 7  - the   to ta l   en tha lpy  H as w e l l  as the static enthalpy h by Rs 

and, f ina l ly ,   the  stre-am function $ by p,u,RE. The temperature i s  normal- 

ized  by the temperature  immediately  behind  the  normal shock 

2 

S 

Ts(o) '   the 
viscosi ty  by its value  immediately  behind the normal  shock p, 

Io, . B  a r e  a l l  noMllalized by the quantity [kT I4/h3c2. From here on, 

the  equations are a l l  w r i t t e n   i n  nondimensional form. 

s ( 0 )  and 4, 

s ( 0 )  

the  conservation  equations  can  then  be  writ ten  in 5, 7 coordinates as 

'3  '3 

- =  kurs 
a7 
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- h B i ]  

w i t h  i = 1,2,3 and Re = pJJmRs/ps(o). 

Expressions foF the  radiation  parameters hi and ri will be  given i n   t h e  

next  section after “; i s  specified. 

Equations (14) and (18) are to be solved-by  satisfying  the  proper  boundary 

conditions  and a state equation  (given  in the next  section). The boundary 

conditions f o r  the flow f i e l d  are given  as.  follows : 

a t  the shock, 

u = US, P = PS, p = PS, H = Hs 

and HS, us, p , ps are given  by  oblique shock relat ions;  
S 

a t  the body, 

ql = 0,  

u = 0, 

H = q,. 
9 



For the   rad ia t ion   f ie ld ,  the differential   approximation  gives us the condition: 

a t  the shock, 

for  cold-gas  ahead of the shock, we have . Io - 2% = 0, which 

then  implies (Io)i - 2(  )i = 0 f o r   a l l  i. gY 
a t  the body, 

the  cold wall assumption Io + 2% = 0. Thus, (Io)i -k = 0, 

f o r  a l l  i. 

2.2 GAS PROPERTIES 

Curve f i t t i n g  of t-he equilibrium  properties of a i r  calculated  in  Ref. 6 

suggests  the  following  approximate  equation of state: 

with p i n  a t m . ,  p i s  amagat,  and h/R in  degree  Kelvin.  This  then  implies 

that in  the  normalized form, the equation of state i s  

0.84 P,P 
ps ps  s 

Another  equation  of state fo r  air i s  also  avai lable ,  namely 

-1.72 4" gm p = 1.65 x p(T/10 - 

where p i s  i n  a t m s  and T i s  i n  K. Equations (19) and  (20)  thus  completely 

specify  the  equilibrium thermodynamic prupert ies   in--air .  

0 



I n  the  hypersonic limit, i.e. ,  h, << l/2 <(Hm = Hs l/2 e), the thermo- 

dynamic properties immediately  behind t h e  shock a t   the   s tagnat ion   po in t   a re  

completely  determined  by p, and- .Dm. This i s  shown as follows: From Eq. 

(20),  after  normalizing T by T 

write 

2 
do)) P by P,U,, P by P,, one can 

1 

with 

We note a l l  quan t i t i e s   i n  Eq. (2lb)  should  be  in c.g.s. K units.  Now since 

a t  the stagnation  point ~T = 1, p = 1 - 6 and p = l/e, Eq. (2la)  immediately 

y ie lds  a r e l a t ion  

0 

7 

Applying Eq. ( lga)  a t  the  stagnation  point  behind  the shock, we have the 

relation  for  hypersonic flow [i.e., hs(o) w 2 U,] 1 2  

i n  Eq. (23). R i s  the  universal  gas  constant  and  the  unit of $JR should 

always  be i n  K. 0 

Equations  (21b)  and  (23)  thus  give t w o  r e l a t ions  to determine e and T 
4 0 )  

f o r  a given p, and Urn. 
11 



From these  considerations,  we conclude that i n  the hypersonic limit, the inde- 

pendent  parameters i n  our problem are the  flight condition (pm, U,), 

Prandtl  number;viscosity-density product  ratio,  and charac te r i s t ic   l ength  

Rs. The parameter Rs i s  an  independent  parameter~,since it appears   in   the 

radiat ive  t ransfer   parameters   expl ic i t ly .  

The analytic  expression  for  the  absorption  coefficient i n  our t h ree  band model 

i s  taken from Hoshizaki-and Wilson (Ref .  5) .  In f a c t ,   i n  Ref .  5 the  expressions 

are given for more than  three bands, for  accuracy. However, we group them 

into  only  three.   In  addition, the contributions from ions are neglected  and 

we treat oxygen as if  it were nitrogen. I n  other words, i n  the  calculat ion 

of  absorption  coefficients, we model air  by a pure  nitrogen  gas.  In  this 

model, we writ-e ~ 

with 

10.8-< hv 5 12.0 

12 



and .. . .. 

- a = 7.28 x em2 - e$ 

where NN i s  the number density of nitrogen atoms  and 5 i s  the quantum 

mechanical  correction  factor. We approximate 5, by 

N 

= 0.24 -+ 0.0426 (hv - 4.22) 2 
5,  (25) 

The ranges of the three-band model a re  chosen a s  (Ahv)l, 0 5 hv 5 10.8, 

In  the first band (Ahv)l, av i s  small, and  the  optical  depth  (in this range 

of frequency andba- on the shock layer  thickness) i s  much less  than  unity.  

Hence it i s  reasonable t o  approximate cy i n  th i s  range  by i ts  p a r t i a l  Planck 

mean, defined as 

V 
~ . "_ 

r 

L cy,' = ~~ 

I 

' (Ahv)Pdv 

The superscript  ( ' ) denotes  dimensional  quantities. 

I n  the second  and t h i r d  bands, hv/kT i s  large,  consequently e - hV/kT<< 1. 

And we can take cy' cy' as independent of frequency, i. e., 
2' 3 - "  



By using Eqs. (26), (26a)  and (26b), one f inds 

= a $ q i  

(a'ro)i = a;(Io)i 
(27 1 

and after performing  the  integration, ai, B;, B;, B' are found t o  be (kT 

is  of order 1) 
3 

9 Z N#T 
3 2  B; = e -14-3/kr c2.1 + kT[0.24 + 0.085_3(kT)2]] 

h c  

-12/kT [ (g) 2 + 3 (E) 12 +- 6(%) + 61 1 
- e. 

14 



The atom number density NN i s  r e l a t e d   t o   t h e   t o t a l  number density  (and 

eventually  density)  by  taking  the  following model. Namely, we assume that 

there  will be no ionization  before the gas is  total ly   dissociated.   In   the 

dissociation  phase, we r e l a t e   t he  atom number d e n s i t y   t o   t h e   t o t a l  number 

density  by  using the Lighth i l l ' s   idea l   d i ssoc ia t ion  model. For the   ionizat ion 

phase, we assume the  gas i s  i n  Saha equilibrium. Hence, for   the  dissociat ion 

phase, we have 

and for the  ionization phase 

By using the re l a t ions  (26) t o  (33), one can f ind  the  expressions  ( in  non- 

dimensional form) f o r  CY'S, B ' s ,  A ' s  and I"s involved in  the  energy Eq. (16) 

and the   rad ia t ive   t ransfer  Eqs. (17) and (18) are as follows: 



B = 2 T  1 e -a/T (a3 + 3a2T + 6aT2 + 6T3) - e -b/T [ (b3 + 3b T 2 
2 

+ 6bT2 + 6T3)] 1 

B3 = e 
-b/T (b3 + 3b2T + 6bT2 + 6T3) (39) 

with 



C 2-38 , c = 1.2 

= kTs(o)  kTs(o) 

where kTs(o) i n  eV. 

The fac tor  ( ’ i n   f r o n t  of ~ q s .  
-cp 

(43) 

(34) t o  (37) denotes that during  the  dis- 

sociation phase, the  value @ should  be  used  and  during  the  ionization  phase 

(1 - cp) should  be  used 

2.3 SERIES FORMULATION 

Similar to Part  I of reference 3, one can write the  following  series  expression 

immediately  behind the shock (See Appendix m): 

u = 5 + ulg + u255 + ... 
S 

r S = 5 +- r153 + r255 + .. . 

ps = 1 - 5 + p2z4 -E ... 2 

= - 1 (1 - p15 2 - p,g4 + .. .) 
ps  c 

ks = I + k15 + k2g4 -E ... 2 

2 4 

17 
Ps = 1 - PI5  - 1125 + ... 

(44) 



These expyessions ape va l id  under the  approximation  of  the  thin  layer con- 

cept, i .e.,  we have approximated  the  factor u wkilch should  appear as a 

factor   in   the  expressions of u and rs , by  taking uo = (dSs/d6), = 1. 

This  approximation i s  reasonable  for small values of E. We also  note  that 

in   the   express ion   for  we have neglected the term E, by s e t t i n g  1 - E 1. 

0' 

S 

* s  3 

Based on Eq. (44), we assume the  dependent variables  can be wri t ten as 

Also,  from the  discussion  in the previous-  section, ve can write 

T = Tl(l + T25 + T3Z4 + .. .)  
2 (46) 

After  using  an  approximate series representation for the  exponential  function 

(see Appendix 111), we obtain 

-IQ 



All coef f ic ien ts  are def ined   in  Appendix I. 

Subst i tut ing Eqs. (44) to (50) into  the  governing Eqs. (14) to (18) and 

co l lec t ing   the  same power of 5 ,  we obtain the equat ions  for  fl, gl, Ai,1, 

Qi,l> f2, g21 Ai-;2, Q5,2> f3, g3, A.  and Q. (we note the pressure i s  
~ ~~~ 

173 

obtained by in tegra t ing  Eq. (15) ) . 
FIRST OFDER 

SECOKD ORDER 
N d 

&Re '1 3 - 

0.84 
2.52 -0.16 r 

+ -  g2 - 2 "f 1 (f u 1 L " V  T I  + u 
M1 egl [3($ - J )  + 2.52 (1 U 1 1 1 



+ F 2 = 0  

i = 2,3 

i = 1,2,3 

(57) 

THIRD OIiDER 

20 



f12 df u f - p f  2 
1 2  1 1  Ulf2-p1 2 3 1 1 2 2 1 U f - p u f - p f  

+ - +} + F1 [( 
dll fl fl fl 

1 - 2r1 ( 1- 

u f - p f  

+ 2r2 1 + r ‘1 + (2rl - 
fl 

1 2  11 ) F 2 + F  = O  3 

21 



J i = 1,2,3 (65) 

See Appendix I for   def in i t ions  of F1, F2,  F3, H1, H2, ol, 02. The boundary 

conditions  for  these  equations  are: 

a t  was1 f l  z..f = f = Q ,  2 3 . .  

A i , j  -1- 2Qi, = 0 
* 

Since  the  ra t io  N/Re is-zero for an assumed f l u i d  model of  zero  viscosity, 

the  energy and momentum equations  for  the  inviscid  case  can be wri t ten from 

I-I 

2 0.84 f- 2 2r1f1 + Ggl + [ 3 ( 5  1 - 7 )  + 2.52 (1 - -) 1 + H1 + 3p1 - 12r1 = 0 
UT u-i &-I L I .I. 

* 
The wall i s  a t  constant-temperature and i s  non-radiating. 

22 



dg3 
u f  
2 3  

2rJfl q" - 4flg3 - fl F 1 + [04 -k ( r 3 2 r 2 ) F l  + 2rlF2 + F 3 ] = 0 

A s  v i scos i ty  does no t  inf luence  the  radiat ive  t ransfer   direct ly ,  Eqs. (531, 

inviscid model. 

The boundary conditions for the  inviscid  equations are: 

a t  shock: f l = f  2 3  = f  = ~ l  gl = 1 g2 - g3 = 0 - (73 1 



2.4 METHOD OF SOLUTION 

2.4.1  Viscous 

From Eqs. (51) to (55), we observe that  it is  convenient to   t ransform  the 

variable from 7 to- w by 

.. -~ " 

d w  fl (74) 

Equation (74) i s  solved  subject t o  the condition w = 1 a t  T = l / 2  and 

w = w a t  ll = 0. The wo i s  determined from Eq. (74). It i s  a l s o  con- 

venient   to   s t re tch  the  coordinate  by 0, = S / f i  w where h = N/eRe. To 

r e t a i n  Eq. (74), the T coordinate i s  also s t re tched by = l/fi 7. From 

here on we w i l l  use the  stretched  coordinates  but  omit  the ( - )  for   s implici ty .  

0 

In the  w variable,  a formal  solution  can  be  obtained for fl, gl, A ' B  and 1 
QS's as follows. 

The first order energy equation (Eq.  52)  can  be wrl t ten i n  terms of the new 

variable w as 

2 

27 dw dgS kr "," + Fl(gl) = 0 
+ - -  

dw 
(75) 

A solution of Eq. (75) czri be wr i t ten  as (subject 20 the boundary  conditions 

g,(w,) = gb and ql/m = 1) 
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- P r G L  
dw 

0 

where gb i s  the  wall  enthalpy. 

The first order momentum equation (Eq. 51) can be wr i t t en   i n  the new variable 

w a s  

d2f dfl 
+2'Tl-" 0.84 

2 d w  = o  
dw 

We now d i f f e ren t i a t e  Eq. (77) w i t h  respect to w to obtain 

d3f d2f 

d w  3 + ~ - 2 + 3 ~ ~  dw (gl 
d 0.84 ) = o  

(77) 

The solution t o  Eq. (78) canbe  formally  wri t ten as 



G = 1 G4 d w  
5 w  

0 

G6 = 1 wGkdw 
W 
0 

0.84 dW 

The boundary  condjltions used f o r  Eq. (79) are 

A formal solution for the  radiative transfer  equations (Eqs. (53) t o  (55) )  

can also  be  obtained. For example, i n   t he  first band (i = l), the   rad ia t ive  

transfer  equation  can be written as 

26 



where 

The solutions to Eqs. (80) subject t o  boundary  conditions of Eq. (66) are 

with 

and 

J3T1 -AT1 
L = e  1 e dw 

0 

c1 = - (-) 2+a c2 
2 - 8  



Similar  solutions can  be  obtained  for the second  and t h i r d  bands. 

The so lu t ions   t o  the first  t e r m  of  the  series  expansion  are  then  given by 

Eqs. (76) t o  (81). In  order  to  evaluate  these  functions,  however, i n i t i a l  

f l (w) and gl(w) p ro f i l e s  must be assumed. Eence. the solution  technique 
~ ~~~ 

requires a double i t e r a t ion .  A g (w) pro f i l e  i s  first assumed. A f l ( w )  1 

pro f i l e  i s  then assumed and  an wo determined  from Eq. (74). U t i l i z i n g   t h i s  

w a new f l ( W )  p ro f i l e  is obtained from Eq. (79). A f l ( w )  and 

solution i s  therefore  obtained when the f ( w )  profile  converges from an 

i te ra t ion   o f   the  above procedue. Based upon the wo and the  converged 

0’ 0 

l 

f l ( w ) ,  a new g (w)  i s  calculated from Eqs. (76) and (81). The solution 1 

For second  and t h i r d  terms of the  series, i.e. f2, f3, g2, g3, no formal 

solution can be writ ten.  The different ia l   equat ions can be wr i t t en   i n  

simplified form  such that they are numerically  integrated from the w a l l  

(at  wo ) by  guessing  values  of df2/dw, df /dw a t  the wall and g2 (w) , 
g (w)  until the  boundary  conditions a t  the  shock are  satisfied. The 

radiative  transfer  equation  can s t i l l  be  solved  formally,  the form of  the 

solutions are similar t o  that of Eqs. (81). 

3 

3 

2.4.2 Inviscid 

In Eqs. (67-72) it is  convenient to  transform  the  variable from 17 t o  w 

as defined  by Eq. (74). The resul t ing  equat ions can be numerically  integrated 

subjec t   to  the boundary  conditions a t  the shock (Eq. 72). A problem a r i s e s  

2 8- 



near  the w a l l  i n  that the  solution becomes indeterminant as 7 approaches 

zero.  Considering the f i rs t   order   equat ions,  the solutions of f l  and 

are  obtained by the following  iterative  technique. A g (w) pro f i l e  i s  

assumed and  the  radiation  f ield  obtained from Eqs. (81).* Equations (67, 68, 

g l  

1 

74) are  then  numerically  integrated  to  obtain w f and gl. A s  the  gas a t  

the  stagnation  point, ‘ll = 0, i s  i n  radiative equilibrium, a gl(wo) i s  

0’ 1 

determined  such tha t   the  flux divergence, F1 i s  zero a t  the wall. An 

fl(wo) i s  obtained from Eq. (67) such tha t   the   ve loc i ty   g rad ien t  is  bounded 

a t  the wall. A solution i s  obtained when the i t e r a t i o n  on  gl(w) converges 

Solutions for the  second  and third terms of  the  series,  g2, f2, g3 and f 

are obtained  in a similar manner. A s  (oo i s  determined i n   t h e  first order 

solution,  the  indeterminant  nature  of-the  higher  order  equations i s  avoided 

by   in tegra t ing   to  w0 + AW (T = 10 ). 

3’ 

-4 

Once f ’ s  and  g’s  are  determined, we can  find the density from Eqs. (1%) 

as 

where o and G are   given  in  Appendix I. 1 2 

The physical normal distance y(w) i s  then  given  by  the  transformation Eq. 

~~ ~ 

3c 
Note that h = 1.0 for   the  inviscid  solut ion.  



and the  shock locat ion A(s ) can be obtained  by  evaluating Eq. (77) at  

1 = 1/2.  Also,  from  transformation Eq. ( l3 ) ,  we obtain 

where ($)y denotes  differentiating 17 with  respect   to  5 a t  constant y. 

For  the  viscous cwe., the  convective  heating  to the,. w a l l  and the sk in   f r i c t ion  

are a l so  of  i n t e re s t .  The s k i n - f r i c t i o n , c a n , b e  w r i t t e n  (normalized by 

PJJ3 

T Re = (p "> au  
aY wo 

(854  

After using Eqs. (74) and (83) , we obtain 

df 

2 dw 
0 

In  Eq. ( 8 3 ) ,  we have taken p i  = const = -. Convective  heating  to  the wall 1 
8 



(normalized  by 5 pa$) is given  by 1 

In  order  to  solve the energy  and momentum equations  by the series  expansion 

methods presented  in t h i s  section, it was necessary  to expand the rad ia t ive  

f lux   i n  a series form (Eq. 45). Ser ies   solut ions  for  a wide range of f l i g h t  

conditions  indicated  that  the radius of  convergence for   the  velocr ty  and 

enthalpy  series w a s  s ignif icant ly   larger   than  the  radius  of convergence f o r  

the  radiative  f lux  series.   This problem  has  been  noted  by  others (Ref. 7) 

who have solved  for  the radiat ive heat f lux by series expansion. (This will 

be  discussed  in more d e t a i l   i n   t h e   r e s u l t s   s e c t i o n . )  The reason   for   th i s  

appears  to be associated  with the difficulty  in  approximating  an  exponential 

function w i t h  a large argument by a f i n i t e   s e r i e s .  T h i s  expansion is  dis- 

cussed i n  Appendix 111. 

In  order t o  avoid   th i s   d i f f icu l ty ,  the radiat ive  f lux i s  calculated 

d i r ec t ly  from the f u l l  radiat ive  t ransfer   and  intensi ty   equat ions.  

We can see from  Eqs. (17) and ( ~ 8 ) ~  E does  not  appear  explicit ly  in  these 

equations;  therefore,  they can be considered  as  ordinary  equations w i t h  5 

a s  a parameter. Hence, once the  ser ies   solut ion  to   the  enthalpy  prof i le  is  

obtained,  the  corresponding  radiative flux and in t ens i ty  can  be  determined. 

The second  and th i rd  order  radiative flk solut ions  ( that  w i l l  be 
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discussed)  therefore  correspond  to the solution of the radiat ive transfer 

equation  with the respective  second  and  third  order  enthalpy  profiles. 

The so lu t ion   t o  Eqs. (17) and (18) are given as (similar t o  Eq, 81) 

where 

"1 "1 

s = -  , S, = B2 , S3 = B3 I 

5 

B1 = f (S )  
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and  the   to ta l  q-,, and Io are  

3 3 

i=l i=l 

It should be noted  that  the f ' s  , gl's  and w o ' s  (wFich a re   imp l i c i t l y  

involved i n  ai's and B i t s )  are  functions  of LO based on the   s e r i e s  

expansions  of and Io. The resul ts   indicate   the  solut ions of f . ' s  

and g 's are   re la t ive ly   insens i t ive  to the  approyimation  involved i n  

the series expansions of % and Io / The solutions of as given 

by Eqs. (87) and (88) were found to have $he same region of v a l i d i t y   a s  

that of the velocity and  enthalpy  profiles. 

% 1 

i 

qT 

2 - 5 FLIGHT CONDITIONS  CONSIDEEED 

A s  one of the prime- objectives pf this investigation was to  evaluate  the 

influence of coupling between ,?the  momentum and  energy  transport mechanisms, 

case  runs were selected  with  f l ight  conditions  and body dimensions  applicable 

to the  hyperbolic  reentry problem  (Ref. 8 )  which produced the  maximum coupl- 

* 

ing  effect .  The  maximum coupling will occur a t  the +ximum value of the 

radiation-convection  energy  parameter r (product  of.invpse.Boltzmann 

number and the optical   depth).  A s  the Boltzmann number and opt ical   depth  are  

independent  parameters,  the  flight  conditions commensurate w i t h  a maximum r 
value  for a minimum and maximum value of optical   depth were used. In   addi t ion t o  

~~ 

these two extreme radiation  cases, a check  run was  made f o r  free f l ight   condi t ions 
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current-ly  being  investigated as a "standard"  hyperbolic  reentry  case. A 

corresponding  case  of no radiation  influence was made ~~ for each of the three 

cases  noted  and the result ing  matrix  of six cases were invest igated  for   both 

viscous  and  inviscous  models. (It i s  noted  that   the  Reynolds number  becomes 

a dependent  parameter when the optical   depth and the radiation-convection 

value r are used as independent parameters. ) Table 1 i s  a summary of the 

parametric  conditions  of  the t*ee cases  investigated  and  Figure 2 (Ref. 9) 

i l lustrates  the  corresponding  regions of i n t e r e s t  on a thermodynamic propert ies  

p lo t  of reentry  conditions. 

-x- 

Numerical solutions  are  obtained by the  input  of  the  free  f l ight  conditions 

(veloci ty  and density),  stagnation  point shock radius,  Prandtl number, and 

the viscous  parameter A for the viscous  case ( A  = 1 for the  inviscid  case).  

In  that  the  coordinate  system  used in   the  formulat ion w a s  body oriented, 

an assumed  shock shape i s  required. The shock  shape is  input  through  the 

constants of the parameter  series  expansion  along the shock (Eq. 44) .  These 

constants  are,  for a given body, a l l  a function of the bluntness  parameter Bs. 

(Assuming the  shockAs  conical i n  shape. ) The values of B can be found 

by first assuming a value,  then  adjusting it to  f i t - the  calculated.  shock 

shape. F i r s t  guess  values of Bs i n  this  report  were taken   d i rec t ly  or 

extrapo.Lated from the  curve  given  in Lomax and  Inouye ( R e f .  l a ) .  No i t e r a t ion  

on Bs i s  carr ied  out  i n  this   s tudy.  

S 

The computational  time on-an n o 8  cokputer  per  solution (three terms) ranged 

from 1 l/2  minutes for an  inviscid  case  to  4 minutes  for a viscous  case. 

Urn = 16 km/sec; p, = 4-21 x 10, -7 I .  gm/cm3; Rs = 234 em. 
* 
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TABLE I 
PROPEEPIES  FOR  CASES INVESTIGATED 

Free  Stream  Velocity (km/sec) 

I 

16.0 

Free  Stream  Density, p, &cm 3 ) 4.21 

Stagnation  Point Shock Radius, Rs ( m e t e r )  2.34 

Normal  Shock Density  Ratio, E 0.057 

Reynolds Number, Re ( p,U,Rs/ps ( 0 )  ) 216, ooo 

Viscous  Parameter, h ( pwpw/pSpseRe) 

Radiation  Cooling  Parameter, 6 (2\/ 5 p,Um3) 0.454 1 

CASES 

I1 

18.0 

1.0 

18, ooo 

3.04~10'~ 

0.226 

I11 

11.0 

10.0 

3.00 

0.065 

128,000 

3.24~10- 4 

0.015 
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Section 3 
RESULTS 

3.1 VALIDITY OF SERIES SOWTTIONS 

The u t i l i t y  of the Blasius  type series used i n  Eqs. (44) and (45) ( l ike any 

se r i e s  method) i s  r e s t r i c t e d   i n  that i t s  global  accuracy  for a f i n i t e  number 

of  terms  can  only  be  evaluated  by a comparison with  an  "exact"  solution  for a 

given problem. I n   t h i s  manner, Chou (Ref. 2) showed his   c losed form Blasius 

series  solution* of the adiabat ic   inviscid  thin shock layer  w a s  most e f fec t ive  

(2 5$) in   p red ic t ing   the  gasdynamics about a var ie ty  of bodies  to  the  sonic 

l ine.  For the  viscous  and  inviscid  radiating  flow of a t h i n  shock layer  about 

a  body, no "standard"  solutions  exist   for comparison. The va l id i ty  of a 

f ini te   ser ies   solut ion  to   these  radiat ing  f low models may, therefore,  only  be 

assessed  by  indirect  arguments. 

The  same form  of series  expansions were used i n  this investigation as w a s  

found  successful in   the  adiabat ic   inviscid  solut ions  of  Chou (Ref .  2). A s  

the  radiat ive flux addi t ion   to  the energy  equation  influences  the gasdynamics 

only  indirectly  through  the  density  f ield,  it was ant ic ipated that the 

rad ia t ion   f lux  would a f fec t   the  gasdynamics  of the flow  by a perturbation 

e f fec t .  The coupling  results  discussed later i n  this  section showed t h i s   t o  

be   t rue   for   bo th  the inv isc id  and  viscous models. 

* 
~~ 

Three- term series. 
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The va l id i ty  of the  ser ies   solut ion  for   each  parameter  must r e s t  on two 

fac tors :  (1) the  numerical  convergence of t h e  series solution, and (2)   the 

physical   in terpretat ion of the results. Consequently, the  region  of  numerical 

convergence of the enthalpy series and the  corresponfiing  radiative  energy  flux 

are  discussed. 

Figure 3 i l lus t ra tes   the   numer ica l  convergence  of the  enthalpy  profile a t  two 

d i f fe ren t  body angles. A t  4-40, the  deviation from  second t o   t h i r d  term i s  

approximately 20%. The results  of  applying Shanks nonlinear  transformation 

(Ref .  11 ) t o  the f i r s t  three terms i n   t h e   s e r i e s  are given. The Shanks forma- 

t ion  represents  an approximate method of predict ing  the converged solution o f  

a series expansion  given three o r  more terms of the series. This  transformation 

technique  has bgen f requent ly   u t i l i zed  by Van  Dyke e t  al. ( R e f s .  12, 13) as an 

indication  of  the  rate-of  series convergence. A comparison .~ - . of t h e  Shanks r e s u l t s  

wi th   the   th i rd  term ,s.Qlut$on indica tes   tha t  a three term expansion  is-effective 

in   descr ibing the en tha lpy   f i e ld   t o  a body angle  of 44'. 

The numerical  comergence of the radiative  and  convective  energy  fluxes to the  

wall i s  shown i n  Fig. 4. Results from two methods of calculat ion of the 

radiative  energy  f lux are indicated. The ser ies   solut ion w a s  i n i t i a l l y  used; 

however, the  physically  impossible  nature  of  the  second  order  series results 

of the radiat ive  energy  f lux  resul ts  beyond 35O indicates  a serious breakdown 

o f  the  flux series beyond this point. The slow  convergence ind ica tedby  the  

discrepancy between the  second  and third order  terms  suggests  that  several 

additional  terms are required i n  order t o  obtain a"  solution  valid  near  the  sonic 
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l ine .  T h i s  slow  numerical  convergence of the rad ia t ive  heat f lux  series w a s  

also noted  by Cheng .(.Ref. 7). Cheng suggested  the  convergence  could  be improved 

by a change i n  the form of the radiat ive  heat  flux series expansion.  (This has 

not  been shown va l id . )  Because  of t he   r ap id  convergence  of the  enthalpy series 

as shown by  Fig. 3 ,  the   radiant   f lux w a s  ob ta ined   in   th i s   inves t iga t ion  from a 

solution of the  complete t ransfer   equat ion (the differential   approximation) 

once the  enthalpy  dis t r ibut ion w a s  calculated. The improved  numerical con- 

vergence of the  radiat ive  f lux  by this mekhod i s  show  in   F ig .  4. The r e s u l t s  

from the Shanks enthalpy  dis t r ibut ion  indicate  the three-term  solution to be 

a va l id   so lu t ion   to  the sonic   l ine (- 44'). 

A s  the  convergence  of the  convective heat f l u x   s e r i e s  i s  di rec t ly   p ropor t iona l  

to   the   en tha lpy   resu l t s  a t  the w a l l ,  Fig. 4 shows the radius of  convergence  of 

the  convective  f lux series (Eq. 86b) t o  be  very  large.  Figures 3 and 4 a r e  

i l l u s t r a t ive   o f  the  r e s u l t s  of the three  cases  investigated.  They show the 

three t e r m  series solution  numerically  converges  to the Shanks r e s u l t s  (2 5%) 

t o  a body angle  near  the  sonic  line (- 45'). 

Figure 5 shows the  comparison of the  stagnation  point  enthalpy  results  of  the 

viscous  and  inviscid  series  solutions  with^ the detailed viscous code (VISC) 

(Ref. 1). Slight  discrepancies between the ser ies   so lu t ions  and the  VISC 

r e s u l t s  are noted. The deviat ion  of   resul ts   in  the boundary layer  i s  a t t r i bu ted  

to   the  constant   Prandt l  number value  of .77 used i n  the series solution.  This 

constant  value  infers a higher   f luid  conduct ivi ty   in   the boundary layer than  the 

temperature  dependent  Prandtl number associated  with air a t  high  temperatures 
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(Ref. 14). Consequently a thicker  boundary layer  i s  experienced  by  the  series 

solution. The reason  for  the  deviation of the   en tha lpy   prof i les   in   the   inv isc id  

region i s  not  clearly  understood. It is  noted, however, tha t   the   ana ly t ica l  

equation  of  state  used  in  the  series  solution  results  in  an  enthalpy-temperature 

re la t ionship which i s  independent of pressure. Comparisons with VTSC code showed 

small resulting  temperature  differences. Because of the strong  temperature de- 

pendence of  the  absorption  and  emission  terms, however, small temperature  differ- 

ences   are   suff ic ient  to inf luence  the  radiat ive  t ransfer   s ignif icant ly .   This  

suggests that an improvement in   the  ser ies   solut ion  should  include a more pre- 

cise  equation of s t a t e .  

It should  be  recalled that the  prime motivat ion  for   the  ser ies   solut ion method 

w a s  to determine the degree  of  coupling  between the momentum and  energy  trans- 

port  mechanisms. The numerical  convergence r e s u l t s  of Figs. 3 and 4 and the 

comparison  of the  stagnation  point  results  of  Fig.  5 j u s t i f y   t h e   v a l i d i t y  of 

the se r i e s  expansion  solutions to this end. 

The nature of the  enthalpy  and  velocity  distribution  through  the shock l aye r   fo r  

d i f fe ren t  body angles i s  shown i n  Fig. 6.  For the inviscid  region the increase of 

the to ta l   en tha lpy  away from the  s tagnat ion  point   resul ts  from the  expected  increase 

in  velocity  and  decrease in  radiative  heat l o s s  of the  flow as it leaves  the  stagna- 

t ion  region. The conduct ivi ty   in   the boundary layer  increases  the boundary layer  

thickness  and  correspondingly  decreases  the  convective  heat flux. 

The negligible  variation  of the veloci ty   prof i les   about   the body a s  shown i n  
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Fig. 6 were found to be  very  interesting. This i s  due to the  rapid  numerical 

convergence  of the  veloci ty   ser ies  (Eq. 45). This   insensi t ivi ty  to body angle 

suggests the coupling from the  enthalpy  distribution to the momentum field is 

weak. This  coupling w i l l  be   discussed  fur ther   in   the  resul ts   sect ion.  

The convective  and  radiative  heat  f lux  distribution  about a body are  shown i n  

Fig. 7. A s  was noted  by  Hoshizaki  and Wilson (Ref. 5 )  the   radiat ive  heat ing 

decreases  significantly more rapidly than the  convective  heating. However, 

the  radiative  heat  f lux i s  approximately 25% of i t s  stagnation  point  value a t  

the  sonic  l ine.  

Figure 8 i l l u s t r a t e s   an  assumed and  calculated shock  shape. Since  the  primary 

objective of t h i s   r epor t  i s  to study the various  coupling  effects between 

flow f i e l d  and  radiat ion  f ie ld   ra ther   than to give  an  accurate  quantitative 

r e s u l t   f o r   r a d i a t i n g   t h i n  shock layer ,   an   i t e ra t ion  on  shock  shape w a s  not 

carr ied out i n  this investigation. 
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3.2 COMPARATIVE RESULTS 

A comparison of. the  enthalpy,  veloc.ity and hea t   f lux   resu l t s   for  the three 

flight  conditions*  considered (Table 1) i s  presented  in  Figs.  9 and 10. The 

r e l a t ive   e f f ec t s  of the three  f l ight   condi t ions upon the result ing  enthalpy 

and ve loc i ty   p rof i les   in  the shock layer and the heat flux dis t r ibu t ion  a t  

and away from the stagnation  point w i l l  be considered. 

I l lus t ra t ive   en tha lpy   and   ve loc i ty   resu l t s  are shown i n  Fig. 9. The r e s u l t s  

presented are fcrr a representative body angle  of 36 for  both  the  viscous 

and inviscid-  models. The magnitude of-radiative and viscous  transport  govern 

t h e  enthalpy  and  velocity  distributions.  Although radiative t ransport  w i l l .  

thicken  the boundary layer  somewhat, the general  boundary  layer  distribution 

i s  a direct   funct ion of the  magnitude of viscosi ty .  (Note, however, the  thick 

gas   effect   near  the w a l l  of the 11 km/sec inviscid  case.  ) Comparing the 

magnitudes  of the viscous  parameters  in  Table 1 f o r  the  three  cases,  the 

largest  viscous  influence i s  anticipated  for"the 18 km/sec case.  This i s  

substantiated by the  enthalpy and velocity boundary layer profi les   noted  in  

Fig. 9. The 16 and 11 km/sec cases have s ignif icant ly   less   viscous  inf luence 

as i s  demonstrated  by their decreased  boundary  layer  thicknesses. Correspond- 

ingly,  the  viscous  velocity  profiLes o f  t he  la t ter  two cases   d i f fe r   on ly   s l igh t ly  

from %he inviscid  runs near the  w a l l .  

0 

The s ignif icant   inf luence of the   rad ia t ive   t ranspor t   i s -observed   in   the   inv isc id  

SC 
I n  t h i s  discussion, the free Fl ight   veloci t ies   are   used as the   ident i f ica t ion  
of the  three cases considered. 
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region  of the enthalpy  distributions.  Having  comparable cooling  parameters, 

r, the 16 and 18 km/sec cases  experience  similar  enthalpy  profiles  in  the 

inviscid  region.  In  contrast ,   the small cooling  parameter  of  the 11 lan/sec 

case  results  in  an  enthalpy  profile  approaching  that   of  an  adiabatic  f low. 

The conformity o f  the ve loc i ty   resu l t s   in   the   inv isc id   reg ion   ind ica tes  

the  influence of the radiat ive  t ransport  upon the ve loc i ty   f i e ld  i s  small. 

This  coupling w i l l  b e   d i scussed   i n   de t a i l   i n  subsequent  paragraphs  of 

th i s  section. 

F igure   10   i l lus t ra tes   the   re la t ive  comparison of the  convective  and  radiative 

heat fluxes  about  the body. The differences  in  the  distributions  demonstrate 

the significance of the f ree .  stream condition upon the convective  and r a d a t i v e  

heat loads  about  the body. The rad ia t ive   f lux  i s  a direct   funct ion of the 

temperature  level in  t h e  shock layer. A t  high  temperatures, the radiat-ive 

propert ies  o f  emission  and  absorption  are less sensit ive  to  temperatures 

than a t  the  lower  temperature levels. Consequently,  even  though the  

temperature change i n   t h e  shock layer  away from the  stagnation  point i s  the 



1. 

0. 

0. 

0. 

1.0 

0.8 

0.6 

0.4 

0.2 

0 10 20 30 40 50 5 0 10 20 30 40 50 

0 8 u BODY ANGLE, O(deg) 4 ffi 
BODY ANGLE, O(deg) 

Fig. 10 Convective and Radiative Heat Flux Distributions fox- Three Free 
Stream Cases 



grea tes t   in   the   h igh   ve loc i ty  case* (18 km/sec) , the  change of rad ia t ive  

heat  flux  about the body for t h i s   ca se  i s  the least far the  three  considered. 

In  the 11 kmJsec case, the temperature change about the body 5 s  the least, 

however, the  temperature  level i s  suf f ic ien t ly  low t h a t  a small temperatwe 

change r e s u l t s  i n  a s ignif icant   inf luence upon the  radiative properties.  

This  i s  demonstrated  by  the  correspondingly  large  radfative flux change 

for t h i s  case  about the body as shown i n  Fig. lo .  

The thickening  of the enthalpy  boundary  layer away frcim the  stagnation  point 

accounts  for  the  general  decrease  in  convective .heating. The r e l a t ive  con- 

vective  heating  distributions compare with  the  respective  gradients of the 

enthalpy  profiLes of" Fig. 9 at the w a U .  , The 11 and 16 km/sec cases  experience 

e s sen t i a l ly  the same convective  heating while the  large  vismus  inf luence of the 

18 km/sec case produces a marked change f m m  the  other two. Because of the 

strong  temperature dependence  of the   - rad ia t ive  flux, the change i n  radiat ive 

flux  about  the body i s  more pronounced f o r  all cases  than  the  corresponding 

changes i n  convective  heating. Due t o   t h e  high radiative  heat  f lux  experienced 

a t   the   s tagnat ion   po in t  of a blunt body, however, the radiat ive  heat ing i s  far 

from negl igible  a t  the  sonic   l ine.  

3.3 MOMENTUM .AID ENERGY COUPLING 

An understanding  of the degree  of  coupling be,tween the - .  momentum and  energy 

t ransport  mechanisms w a s  the  prime objective of this investigation. Such an 

~ _ _ ~  =~ 

* 
~~ 

Because  of the  low veloci ty  a t  the  stagnation  point,   the  stagnation  point 
temperature i s  a direct   funct ion. .sf .  the free" strewn velocity.  



understanding  could  provide  the  justification  for  sjmplifying  approximations 

in   obtaining  solut ions  of   the   radiat ing  f low  about  a body. Such approxima- 

t i ons  would  be essent ia l   should  detai led  t reatment  of the r ad ia t ive  and 

coll isional  transport   be  required.  

The comparison  of the   rad ia t ive  heat fluxes  for  both  viscous  and  inviscid 

models away from the s tagnat ion  point   for  the three  cases  considered i s  

presented  in   Fig.  11:- -The s tagnat ion  point   radiat ive heat f l u x  for each 

case i s  noted  for  c.mparison. A s  was expected, the inv i sc id  model yielded 

the  higher  radiative  cooling; however, the  difference between the  viscous 

and inv isc id  models was surpris ingly small for a l l  three  cases.  The 

influence of v i scos i ty  upon the   rad ia t ion  w a l l  f l u x  was only  experienced 

beyond approximately 30 . Being a direct   funct ion  of  temperature, t h i s  

difference in the   rad ia t ive   f luxes  i s  a t t r i b u t e d  to the influence  of  viscosity 

on the  thickening of the boundary layer. A s  the  flow  proceeds  about  the 

body, a greater port ion of the t o t a l   r a d i a t i v e   h e a t   f l u x  comes from the  

boundary layer  region;  therefore,  the  influence  af the v iscos i ty  i s  ex- 

perienced more dramatically  far  from  the  stagnation  point.  The r e su l t i ng  

deviations are shown to be  s ignif icant   near   the  sonic   l ine w i t h  the viscous 

r e s u l t s  below the  inviscid  case as indicated  in  .Pig,  11. Consequently, the 

primary  effects  of  viscosity on the   r ad ia t ive  heat fluxes i s  beyond a body 

angle of approximately bo.-. _ _ I n  the stagpation  region,  the  inviscid  analysis 

yields   an  accurate   descr ipt ion of the rad ia t ive   hea t ing   for  the range of 

Reynolds numbers and  radiat ive  coupl ing  levels   s tudied.  

0 

0 
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The effect   of  the radiat~i-on  transport upon the  convective  heating  load  about 

a body i s  i l l u s t r a t ed   i n   F ig .  12. Because of the  complexity added t o   t h e  

viscous  energy  equation  by  the  divergence of the  radiative  f lux,   the  error 

produced ir-the  convective  flux ~~ by i t s  omission i s  of interest .  The stagna- 

tion  point  convective  heat flux r e su l t s  show the  radiative  transport  can have 

an  appreciable  influence. on the  convective  loss. A s  one  would anticipate,  

the  radiative  heat  loss  thickens the boundary layer   resu l t ing   in  a lowering 

of the convective  losses. Because -of the  large  viscous  effect   in  the 18 km/sec 

case, th is  influence i s  seen to 'effect this case  less  than  the  other two. 

(The ll and 16 h i see  re su l t s  were essent ia l ly  the same. ) Consequently, the 

r e su l t s  of Figs. -11 and 12 indicate t h e  radiat ive heat f lux determined  by 

neglecting  the  flow  viscosity can overpredict the radiat ive loss by less 

than 154, but  an  overprediction of 3546 i n  the convective  heat flux can  be 

experienced when the  radiative  transport; i s  neglected  in  the  energy 

equation. 

Figure 13 iQustr .ates  the  influence of the  radiative  transport  upon the 

velocity  f ield  for  both  the  viscous and inviscid flow models. A s  the  heating 

load  dis t r ibut ions  are  of prime importance, th i s  coupling i s  shown indi rec t ly  

by comparing the  influence o f  ~~ two velocity fields upon the radiative  heat- 

ing  flux, one from a completely  coupled  calculation  and one from a non- 

radiating  solution. It should be reca l led   tha t  the momentum transport  i s  only 

effected  indirect ly  by the energy f i e l d  through the density. The r e su l t s  

shown i n  Fig. l 3  indicate  this  coupling  to be weak a t  the stagnation  point. 

The  "momentum without  radiation" results are  from the solution of the  energy 
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equation  using a so lu t ion   t o   t he  momentum equations  obtained from a non- 

radiating  flow  calculation.  For-the  inviscid model, this v e l o c i t y   f i e l d -  

represents  the  adiabatic  inviscid  series  solution of _Chou (Ref. 2) .  For 

the   viscous  case,   the   veloci ty   f ie ld  w a s  determined from a solution of the 

combined energy  and momentum equations  without  the  radiative f lux  divergence 

term. The r e s u l t s  of Fig. 13 indicate   the weak coupling  of  the  radiative 

transport  on the  veloc- i ty   f ie ld  as the   l a t t e r   i n f luences   t he   r ad ia t ive   f l ux  

away from the  stagnation ~ point. I n  connection  with the r e s u l t s  of Fig. 11, 

these resul ts  indicate- that   an  accurate   descr ipt ion of the  radiative  heat 

flux can be2 obtained  by  the  solution  of the energy  equation  using  the  closed- 

form adiabat ic   inviscid  veloci ty   dis t r ibut ion of Chou (Ref .  2 ) .  



Section 4 
CONCWSIONS 

A tbee-term series formulation of the viscous  and  inviscid,  radiating- 

absorbing  flow i n  a t h i n  shock layer about  an  axisymmetrical body has been com- 

pleted.  The radiative transport  w a s  modeled with a three band  continuum  absorp- 

t i on   coe f f i c i en t  and w a s  described by the differential   approximation.  Solutions 

for  each  of the three terms i n  the series have  been  obtained f o r  a spherical  body 

a t  three f l igh t   condi t ions  which provide a wide v a r i a t i o n   i n   t h e  effects of v i s -  

cosity  and  radiative  cooling. The three term solut ions were compared with 

the r e s u l t s  of a Shanks non-linear  transformation of t he  series. Numerical 

convergence w a s  thus  confirmed  for  the  enthalpy  and  velocity series away 

from the  s tagnat ion  point  to a body angle  near the sonic   l ine.  Having 

obtained  an  enthalpy  distribution, the radiat ive  heat   f lux w a s  found  from 

the  solut ion of t h e  radiative t ransport   equat ion  s ince  the  radiat ive heat 

f lux  series w a s  shown to slowly  converge. A comparison of t he   s e r i e s   so lu t ion  

with a detailed stagnation  point  calculation showed that  the series formula- 

t i o n  had  properly  accounted  for the essent ia l   physics  of the flow. 

The radiative  and  convective  heating  distributions w e r e  obtained to a body 

angle  of 45O fo r   t he  three cases  considered. The coupling  between the 

momentum and  energy  transport was evaluated  by  comparisons  of the convective 

and  radiative flux dis t r ibu t ions  at and away from the stagnation  point.  T h i s  

coupling  analysis  indicated that  the  inf luence of viscos i ty  on the rad ia t ive  
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heat   f lux  calculat ion was small (< 15%). The radiat ive  t ransport  w a s  shown 

to  effect   the   convect ive heat f lux  more strongly. The convective  heating 

may be  increased by 35% near  the  sonic  l ine when the   rad ia t ive   t ranspor t  i s  

neglected. The influence o f  the   radiat ive  t ransport-  on the   ve loc i ty   f i e ld  

w a s  shown t o  be small.  the rad ia t ive   f lux   resu l t s   ob ta ined  by  using a 

veloci ty   f ie ld   obtained from a non-radiating  flow  calculation w a s  shown to 

agree  very  c losely  with  the  resul ts   of  the f u l l y  coupled  analysis. 

These results suggest  that  an accurate   descr ipt ion of the  radiation  heating 

about a blunt  body c~ ln  be  obtained from an  uncoupled  solution of tk energy 

equation  with  an  adiabatic  inviscid  description of the  veloci ty   f ie ld   (e .g .  

Ref. 2 ) .  
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Appendix I 
LIST OF  COEFFICIEMTS 

FIRST ORDER 

12- ~ (kT -S(O) ) , C = 2.68 x SOm3 (kTs(o)) 3/2 C2 c2 = 4.47 x 10 ~ ~ ~~ 3 3 
p wuw 

e (a3 + 3a 2 T1 + 6aT1 2 -t 6T13) 

-b/T1 
e  (b3 + 3b2T, + 6bT, + 6T, 3, 

2 
= e  (3a T1 + 12aT: + 18T1 3 ) 

- 0 1  2 
= e  (3b Ti + 12bTf + 18T1 3 ) 

B 
1 7  0 

1/2 



SECOND ORDER 
g2 p 1  T2 = T + 0.49 - + - 

270 gl 1.72 

2 f.. 

2 
- 

p2,o - 
2 ( 1  + C2T1 e 
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- 
v2,o - - 8 JT 

2c.l + T:.5 C e 3 "1 

B3,2 = 2 T 2 r e  ( 1 + E) T2 + Tlf  (bT1)] 



THIRD 1 ORDER.. COEFFICIENTS 

L L 

-e  /T 

[2( 1+C2Tle . ')] - 2@$( C2Tle 

+ BQ i + Cei + (z - f i T ) 2  + Aei- (2 T2 + 2 - - 3 7 ) ] /  
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- a/T 
B 

273 = 2T1f(a)  (T3 + B a  + C a  + AaT2) + 2T1e T T 2 2 ( 1  + E) T2 

(3a 2 T1 + 12aT1 2 + 18T1 3 ) + 3a 2 T1T3 + 6aT1 2 (2T3 f T22) 

+ 18T: (T3 + T22)] - B3y3 
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CY (CY A + a  A - 4 n B  1,o 1,l 1,2 1,2 1,l 1,o. 1, 2 l  + r2a2y0 

F3 = r~a1,0(a1y1A1,3 +CY 1,2 A 1,2 +CY 1,3 A 1,l )-4nB 1, OBl, 3 1 
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H2 = 9r2 + 6 u c  + 15u2 + 3k2 + 7rf "+ 23r1u, + 7rlks 
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Appendix I1 

ERROR ESTIMATION FOR THE QUASI-  ONE-DIMENSIONAL  APPROXIMATION 

I n   t h i s  appendix we w i l l  show that within  the framework of d i f f e ren t i a l  approxi- 

mation, the quasi-one-dimensional  approximation that   leads to Eq. (5b ) intro- 

duces  an e r ro r  of the  order e , which i s  small. 2 

Equation (?a) can  be wr i t t en   i n  body oriented  coordinates as follows: 

For a th in  shock layer, one may approximate E e 1, r M r . Thus Eq. (A-1) 

becomes 

S 

A f t e r  frequency  integration and transforming x  and y t o  and 1, we 

f ind  

Equation ( 7 )  i s  now needed for  the  determination of 9 ~ .  A f t e r  frequency 

integration  and  transformation  into 5 and Tl variables, Eq. (7) becomes 



Simi la r   t o  the series  given  by Eqs. (44) and (45), we write 

Subst i tut ing Eqs. (A-5) t o  (A-7) and Eqs. (44)  and (45) i n t o  Eqs. (A-3)  and 

(A-4) ,  co l lec t ing  terms of the  same order i n  5 ,  we obtain 



From the above equations, it is  seen tha t  if  we assume 
Q i , l Y  Q L , ~  t o  be of I 

order  unity, and 

from 

since a i .,1, i , 2  Q! are of the same order of magnitude 

i s  of order ( h i a t  , oai , 1 ) (note that 

Y 

f , - = -  $,, 2," , dw i s  O ( 1 )  across  the shock layer). I 
L UII u w  

In  view of Eq. (56) , we conclude  from Eq. (A-9) t ha t  i s  of order e. 

From  Eq. (A-8) it can  be  seen that the  term  omitted  in the approximation of 

Eq. (56) i s  of order e . The result ing  simplification of  the radiant flux 

divergence i s  thus  val id   for   thin  radiat ing shock layer models. 

2 
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Appendix I11 

SERIES EXPANSION OF LARGE PARAMETER EXPONENTIAL FUNCTION 

A strong  exponential  temperature dependence i s  experienced  by  the  absorption 

coeff ic ient  of a i r .  For the   three band model, this  temperature dependence- i s  indi- 

catedby  the  analyt ical   expressions  for   the  absorpt ion and  emission  coefficients 

(Eqs. 34-39). Description of temperature as a series expansion  about  the body 

(Eq. 46) requires  an  approximation  to  the  exponential   function 

- C / T ~ C L T ~ ~  - (T -T 2)54+. . . 2 

e = e  - C/T 3 2  (A- SO) 

found in   the   absorp t ion  and emission  coefficients. The typical   Taylor   ser ies  

expansion  of th i s   exponent ia l  i s  given  by 

- C/T - C/T CT2 2 
e = -e r ~ ~ z ~  +(L (-) + (T -T ') E) g4 + ... ( A - l l )  

Tl 3 2 Tl 

Because of-the  strong  exponential  temperature dependence  of the  absorption 

coeff ic ient  i n  a i r ,   the   value of C i s  of  order 10. The resul t ing  large 

factors  CT2/T1 and (T -T 2, C/Tl res t r ic t   the   reg ion  of- convergence o f  t he  3 2  
Taylor serie-s expansion t o  small values of 5 as shown by F2 i n  Fig. A - 1 .  

In  order  to  obtain  an  approximate  description  of t h i s  exponential  function a t  

greater  distances  from~khe  stagnation  point  than 15 , (x = . 2 ) ,  addi t ional  0 

terms must be used in  the  Taylor  series  expansion or another form  of a se r i e s  

expansion must be  used.  Because 09 the  inherent  complexity  of  higher  order 

series solutions,   the latter course was selected. 
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A general  three term series expansion of an  exponential  function i s  assumed 

where the  constants A and B are determined  from  boundary  conditions on the 

exponential a t  any  value X. In  contrast   to   the  Taylor   ser ies  expansion where 

x = 0 is  ut i l ized,   an  arbi t rary value X = X i s  selected such that the 

Eq. (A-E) represents  an  approximate  description  of  the  exponential  to  large 

value of X (- .85 or 50'). Consequently, the constants A and B can  be 

defined 

0 

A 
0 

sxon 
A = S e  - 2Bxo n 

For a three  term  series,  the  coefficients of Eq. (A-13) insure a positive  value 

to  the  exponential  function a t  a l l  values of X. This i s  essent ia l   to   the  physics  

of the  absorption mechanism. 

If Eq. (A-lo) were writ ten as 

(A-14) 

and the second  and third  exponentials approximated  by a ser ies   s imilar  to Eq. 

(A-12) , the   resul t ing approximation, F3, is  p lo t t ed   i n  Fig. A-1  ( the  ser ies  

t o  second order is noted as F3(2) and t o  third order,  F3(3)). A s  would be 

anticipated, F is  not  as  accurate as the  Ta,ylor series at small values of 
3 
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Fig. A - 1  Comparison of Series  Approximeions t o  a Iarge Parameter 
Exponential  Function 



X; however, it represents  the  exponential  function a t  higher X values  with 

three terms. I n  comparison r e su l t s  where the  Taylor series were u t i l i zed  (small 

values of  X),  the  influence of the approximate series was shown t o  have a 

negligible  effect  u p s  the coupling  investigation. 

In  this  investigation  the  constants A and B w e r e  determined by the  numerical 

code for  each value of C, Tl, T2 and T A value of X. = .75 was used. 3' 
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Appendix I V  

POWER SERBS C o m I C I m s  

I n  t h i s  appendix, the  coefficients u , rl , kl , pl , e tc .   in   the   se r ies  

represented by Eqs. (44) w i l l  be determined for a conical shape body. A 

relationship between the  distance  along a body and the body angle, 8 , 
w i l l  also be obtained. 

We first determine  the  coefficients. For a body oriented  coordinate system, 

a description of an  oblique shock i s  given by (see Fig. 1) : 

u = Sin cp C o s  6 + E Cos cp Sin 6 
2 

S 

= (LC) cos cp PS 

(y+l)  Ma2 cos cp 2 

PS - 
- 

(y-l)  M," cos2cp + 2 

ks - - " 
d4S 

- du 

r S = / S i n  odes 

0 

where cp = f (  ts) i s  the shock angle, 

and 

6 = e - ( p  



Lomas and  Inoye (Ref .  10) has shown that  for  the  inviscid,   adiabatic hypersonic 

case,  the  conical shock model i s  a valid assumption fo r  a conical body when 

the  f ree  stream Mach  number is  greater  than 5 and y ranges from 1.1 t o  1.667. 

I n  our  study, we w i l l  therefore assume the shock  shape to be  conical. !The coni- 

c a l  shock ( i n  dimensionless form) can  be 6escribed by the  equation 

(A- 16) 

where X i s  the  distance from the shock stagnation  point  along  the  line  of 

symmetry, r i s  ver t ical   d is tance f r o m  l i n e  of symmetry and Bs i s  the shock 

bluntness  parameter. From Eq. (A-16) , we obtain 

- 

Cotcp = - =  &x* - 

One then can find  the  derivatives of 'p with respect  to 5, . Similarly  the 

nondimensional  equation for a conical body i s  

Consequently where Xe i s  distance along  the  l ine of symmetry from body 

stagnation  point. 

- 
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Consequently, 

where the body radius % has been  normalized  by the shock radius Rs 

(A-20) 

(A- 21) 

From Eqs. (A-20) and (A-21), one can find  the  derivatives of 9 with  respect 

t o  5 . 

A s  noted i n  the tex t ,  t he  calculational procedure was t o  assume a shock shape, 

(i . e.  gives Bs ) calculate  the  result ing flow f i e l d  and then  iterate- on a new 

shock shape. For an assumed shock  shape, the coefficients of the  ser ies  

n n 

can be found,  under the assumption of th in  shock layer. The factor  uo can 

be taken as unity. 

The velocZty  behind the shock us , can now be expanded in a Taylor  series 



a% 
Using Eqs. (A-15) - (A-22), one can evaluate  the  derivatives of 

Eq. (A-23). The Taylor series expansion of u can therefore be written 

S 

a t n  
S 

u = 5 + 9 5 3  + u355 + . .. . (A- 24) 
S 

where 

1 = - g  {l + 3(1-Bs) - Cl] + O(c) 

u 2 = { S  + 3(1-Bs)(29 - ips) - 21 C1(l-Bs) - 10 C1 + C2] + O(e) 5: 

Similarly, i f  the  other  post shock variables are expanded,’ we obtain  the 

following expressions f o r  their  coefficients (See Eq. 44): 

p2 - - - -L [l + 3(1 - Bs) - CII 
3 

2 - - ’’ (y-1) M0,2 + 2 
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The re la t ion  between 5 and 8 i s  given by Eqs. (A-20)  and (A-21) .  

In  the  special  cases of $= 0 (paraboloid) and B = 1 (spherical), Eq. (A-21)  

can  be integrated to yield: 
b 

Where 

Paraboloid : 
1 

2x 
cot e = “7 

Sphere : 

5 = ao@ . 

(A-26) 
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